RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2017, том 13, 081, 33 стр. (Mi sigma1281)

Эта публикация цитируется в 3 статьях

A Projective-to-Conformal Fefferman-Type Construction

Matthias Hammerla, Katja Sagerschnigb, Josef Šilhanc, Arman Taghavi-Chabertd, Vojtěch Žádníke

a University of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, 1010 Vienna, Austria
b INdAM-Politecnico di Torino, Dipartimento di Scienze Matematiche, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
c Masaryk University, Faculty of Science, Kotlářská 2, 61137 Brno, Czech Republic
d Università di Torino, Dipartimento di Matematica ''G. Peano'', Via Carlo Alberto 10, 10123 Torino, Italy
e Masaryk University, Faculty of Education, Poříčí 31, 60300 Brno, Czech Republic

Аннотация: We study a Fefferman-type construction based on the inclusion of Lie groups ${\rm SL}(n+1)$ into ${\rm Spin}(n+1,n+1)$. The construction associates a split-signature $(n,n)$-conformal spin structure to a projective structure of dimension $n$. We prove the existence of a canonical pure twistor spinor and a light-like conformal Killing field on the constructed conformal space. We obtain a complete characterisation of the constructed conformal spaces in terms of these solutions to overdetermined equations and an integrability condition on the Weyl curvature. The Fefferman-type construction presented here can be understood as an alternative approach to study a conformal version of classical Patterson–Walker metrics as discussed in recent works by Dunajski–Tod and by the authors. The present work therefore gives a complete exposition of conformal Patterson–Walker metrics from the viewpoint of parabolic geometry.

Ключевые слова: parabolic geometry; projective structure; conformal structure; Cartan connection; Fefferman spaces; twistor spinors.

MSC: 53A20; 53A30; 53B30; 53C07

Поступила: 9 февраля 2017 г.; в окончательном варианте 9 октября 2017 г.; опубликована 21 октября 2017 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2017.081



Реферативные базы данных:
ArXiv: 1510.03337


© МИАН, 2024