RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 013, 29 стр. (Mi sigma1312)

Эта публикация цитируется в 14 статьях

Elliptic Hypergeometric Sum/Integral Transformations and Supersymmetric Lens Index

Andrew P. Kelsa, Masahito Yamazakib

a Institute of Physics, University of Tokyo, Komaba, Tokyo 153-8902, Japan
b Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Chiba 277-8583, Japan

Аннотация: We prove a pair of transformation formulas for multivariate elliptic hypergeometric sum\slash integrals associated to the $A_n$ and $BC_n$ root systems, generalising the formulas previously obtained by Rains. The sum/integrals are expressed in terms of the lens elliptic gamma function, a generalisation of the elliptic gamma function that depends on an additional integer variable, as well as a complex variable and two elliptic nomes. As an application of our results, we prove an equality between $S^1\times S^3/\mathbb{Z}_r$ supersymmetric indices, for a pair of four-dimensional $\mathcal{N}=1$ supersymmetric gauge theories related by Seiberg duality, with gauge groups ${\rm SU}(n+1)$ and ${\rm Sp}(2n)$. This provides one of the most elaborate checks of the Seiberg duality known to date. As another application of the $A_n$ integral, we prove a star-star relation for a two-dimensional integrable lattice model of statistical mechanics, previously given by the second author.

Ключевые слова: elliptic hypergeometric; elliptic gamma; supersymmetric; Seiberg duality; integrable; exactly solvable; Yang–Baxter; star-star.

MSC: 33C67; 33E20; 81T60; 81T13; 82B23; 16T25

Поступила: 24 апреля 2017 г.; в окончательном варианте 2 февраля 2018 г.; опубликована 16 февраля 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.013



Реферативные базы данных:


© МИАН, 2024