RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 017, 19 стр. (Mi sigma1316)

Эта публикация цитируется в 3 статьях

Evolutionary Hirota Type $(2+1)$-Dimensional Equations: Lax Pairs, Recursion Operators and Bi-Hamiltonian Structures

Mikhail B. Sheftela, Devrim Yazicib

a Department of Physics, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
b Department of Physics, Yıldız Technical University, Esenler, 34220 Istanbul, Turkey

Аннотация: We show that evolutionary Hirota type Euler–Lagrange equations in $(2+1)$ dimensions have a symplectic Monge–Ampère form. We consider integrable equations of this type in the sense that they admit infinitely many hydrodynamic reductions and determine Lax pairs for them. For two seven-parameter families of integrable equations converted to two-component form we have constructed Lagrangians, recursion operators and bi-Hamiltonian representations. We have also presented a six-parameter family of tri-Hamiltonian systems.

Ключевые слова: Lax pair; recursion operator; Hamiltonian operator; bi-Hamiltonian system.

MSC: 35Q75; 37K05; 37K10

Поступила: 6 декабря 2017 г.; в окончательном варианте 2 марта 2018 г.; опубликована 7 марта 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.017



Реферативные базы данных:


© МИАН, 2024