RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 027, 14 стр. (Mi sigma1326)

Эта публикация цитируется в 3 статьях

Hopf Algebras which Factorize through the Taft Algebra $T_{m^{2}}(q)$ and the Group Hopf Algebra $K[C_{n}]$

Ana-Loredana Agoreab

a Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
b “Simion Stoilow” Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania

Аннотация: We completely describe by generators and relations and classify all Hopf algebras which factorize through the Taft algebra $T_{m^{2}}(q)$ and the group Hopf algebra $K[C_{n}]$: they are $nm^{2}$-dimensional quantum groups $T_{nm^{2}}^ {\omega}(q)$ associated to an $n$-th root of unity $\omega$. Furthermore, using Dirichlet's prime number theorem we are able to count the number of isomorphism types of such Hopf algebras. More precisely, if $d = {\rm gcd}(m,\nu(n))$ and $\frac{\nu(n)}{d} = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ is the prime decomposition of $\frac{\nu(n)}{d}$ then the number of types of Hopf algebras that factorize through $T_{m^{2}}(q)$ and $K[C_n]$ is equal to $(\alpha_1 + 1)(\alpha_2 + 1) \cdots (\alpha_r + 1)$, where $\nu (n)$ is the order of the group of $n$-th roots of unity in $K$. As a consequence of our approach, the automorphism groups of these Hopf algebras are described as well.

Ключевые слова: bicrossed product; the factorization problem; classification of Hopf algebras.

MSC: 16T10; 16T05; 16S40

Поступила: 28 августа 2017 г.; в окончательном варианте 20 марта 2018 г.; опубликована 25 марта 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.027



Реферативные базы данных:


© МИАН, 2024