RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 051, 26 стр. (Mi sigma1350)

Эта публикация цитируется в 2 статьях

Quasi-Orthogonality of Some Hypergeometric and $q$-Hypergeometric Polynomials

Daniel D. Tcheutiaa, Alta S. Joosteb, Wolfram Koepfa

a Institute of Mathematics, University of Kassel, Heinrich-Plett Str. 40, 34132 Kassel, Germany
b Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa

Аннотация: We show how to obtain linear combinations of polynomials in an orthogonal sequence $\{P_n\}_{n\geq 0}$, such as $Q_{n,k}(x)=\sum\limits_{i=0}^k a_{n,i}P_{n-i}(x)$, $a_{n,0}a_{n,k}\neq0$, that characterize quasi-orthogonal polynomials of order $k\le n-1$. The polynomials in the sequence $\{Q_{n,k}\}_{n\geq 0}$ are obtained from $P_{n}$, by making use of parameter shifts. We use an algorithmic approach to find these linear combinations for each family applicable and these equations are used to prove quasi-orthogonality of order $k$. We also determine the location of the extreme zeros of the quasi-orthogonal polynomials with respect to the end points of the interval of orthogonality of the sequence $\{P_n\}_{n\geq 0}$, where possible.

Ключевые слова: classical orthogonal polynomials; quasi-orthogonal polynomials; interlacing of zeros.

MSC: 33C05; 33C45; 33F10; 33D15; 12D10

Поступила: 26 января 2018 г.; в окончательном варианте 17 мая 2018 г.; опубликована 23 мая 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.051



Реферативные базы данных:


© МИАН, 2024