RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 058, 12 стр. (Mi sigma1357)

Эта публикация цитируется в 9 статьях

Fuchsian Equations with Three Non-Apparent Singularities

Alexandre Eremenkoa, Vitaly Tarasovbc

a Purdue University, West Lafayette, IN 47907, USA
b St. Petersburg Branch of Steklov Mathematical Institute, St. Petersburg, 191023, Russia
c Indiana University – Purdue University Indianapolis, Indianapolis, IN 46202, USA

Аннотация: We show that for every second order Fuchsian linear differential equation $E$ with $n$ singularities of which $n-3$ are apparent there exists a hypergeometric equation $H$ and a linear differential operator with polynomial coefficients which maps the space of solutions of $H$ into the space of solutions of $E$. This map is surjective for generic parameters. This justifies one statement of Klein (1905). We also count the number of such equations $E$ with prescribed singularities and exponents. We apply these results to the description of conformal metrics of curvature $1$ on the punctured sphere with conic singularities, all but three of them having integer angles.

Ключевые слова: Fuchsian equations; hypergeometric equation; difference equations; apparent singularities; bispectral duality; positive curvature; conic singularities.

MSC: 34M03; 34M35; 57M50

Поступила: 2 февраля 2018 г.; в окончательном варианте 10 июня 2018 г.; опубликована 15 июня 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.058



Реферативные базы данных:


© МИАН, 2024