RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 068, 10 стр. (Mi sigma1367)

Эта публикация цитируется в 2 статьях

Numerical Approach to Painlevé Transcendents on Unbounded Domains

Christian Klein, Nikola Stoilov

Institut de Mathématiques de Bourgogne, UMR 5584, Université de Bourgogne-Franche-Comté, 9 avenue Alain Savary, 21078 Dijon Cedex, France

Аннотация: A multidomain spectral approach for Painlevé transcendents on unbounded domains is presented. This method is designed to study solutions determined uniquely by a, possibly divergent, asymptotic series valid near infinity in a sector and approximates the solution on straight lines lying entirely within said sector without the need of evaluating truncations of the series at any finite point. The accuracy of the method is illustrated for the example of the tritronquée solution to the Painlevé I equation.

Ключевые слова: Painlevé equations; spectral methods.

MSC: 34M55; 65L10

Поступила: 18 апреля 2018 г.; в окончательном варианте 2 июля 2018 г.; опубликована 12 июля 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.068



Реферативные базы данных:


© МИАН, 2024