RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 080, 50 стр. (Mi sigma1379)

Эта публикация цитируется в 5 статьях

Differential Geometric Aspects of Causal Structures

Omid Makhmali

Institute of Mathematics, Polish Academy of Sciences, 8 Śniadeckich Str., 00-656 Warszawa, Poland

Аннотация: This article is concerned with causal structures, which are defined as a field of tangentially non-degenerate projective hypersurfaces in the projectivized tangent bundle of a manifold. The local equivalence problem of causal structures on manifolds of dimension at least four is solved using Cartan's method of equivalence, leading to an $\{e\}$-structure over some principal bundle. It is shown that these structures correspond to parabolic geometries of type $(D_n,P_{1,2})$ and $(B_{n-1},P_{1,2})$, when $n\geq 4$, and $(D_3,P_{1,2,3})$. The essential local invariants are determined and interpreted geometrically. Several special classes of causal structures are considered including those that are a lift of pseudo-conformal structures and those referred to as causal structures with vanishing Wsf curvature. A twistorial construction for causal structures with vanishing Wsf curvature is given.

Ключевые слова: causal geometry; conformal geometry; equivalence method; Cartan connection; parabolic geometry.

MSC: 53A55; 58A15; 58A30

Поступила: 25 апреля 2017 г.; в окончательном варианте 23 июля 2018 г.; опубликована 2 августа 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.080



Реферативные базы данных:
ArXiv: 1704.02542


© МИАН, 2024