RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2007, том 3, 012, 18 стр. (Mi sigma138)

Эта публикация цитируется в 11 статьях

Boundary Liouville Theory: Hamiltonian Description and Quantization

Harald Dorna, George Jorjadzeb

a Institut für Physik der Humboldt-Universität zu Berlin, Newtonstraße 15, D-12489 Berlin, Germany
b Razmadze Mathematical Institute, M. Aleksidze 1, 0193, Tbilisi, Georgia

Аннотация: The paper is devoted to the Hamiltonian treatment of classical and quantum properties of Liouville field theory on a timelike strip in $2d$ Minkowski space. We give a complete description of classical solutions regular in the interior of the strip and obeying constant conformally invariant conditions on both boundaries. Depending on the values of the two boundary parameters these solutions may have different monodromy properties and are related to bound or scattering states. By Bohr–Sommerfeld quantization we find the quasiclassical discrete energy spectrum for the bound states in agreement with the corresponding limit of spectral data obtained previously by conformal bootstrap methods in Euclidean space. The full quantum version of the special vertex operator $e^{-\varphi }$ in terms of free field exponentials is constructed in the hyperbolic sector.

Ключевые слова: Liouville theory; strings and branes; $2d$ conformal group; boundary conditions; symplectic structure; canonical quantization.

MSC: 37K05; 37K30; 81T30; 81T40

Поступила: 17 октября 2006 г.; в окончательном варианте 11 декабря 2006 г.; опубликована 12 января 2007 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2007.012



Реферативные базы данных:
ArXiv: hep-th/0610197


© МИАН, 2024