RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 084, 66 стр. (Mi sigma1383)

Эта публикация цитируется в 5 статьях

Faithful Semitoric Systems

Sonja Hohlocha, Silvia Sabatinib, Daniele Sepec, Margaret Symingtond

a Department of Mathematics - Computer Science, University of Antwerpen, Campus Middelheim, Building G, M.G.211, Middelheimlaan 1, 2020 Antwerpen, Belgium
b Mathematisches Institut, Universität zu Köln, Weyertal 86-90, D-50931 Köln, Germany
c Universidade Federal Fluminense, Instituto de Matemática, Departamento de Matemática Aplicada, Rua Professor Marcos Waldemar de Freitas Reis, s/n, Bloco H, Campus do Gragoatá, CEP 24210-201, Niterói, RJ, Brazil
d Department of Mathematics, Mercer University, 1501 Mercer University Drive, Macon, GA 31207, USA

Аннотация: This paper consists of two parts. The first provides a review of the basic properties of integrable and almost-toric systems, with a particular emphasis on the integral affine structure associated to an integrable system. The second part introduces faithful semitoric systems, a generalization of semitoric systems (introduced by Vũ Ngọc and classified by Pelayo and Vũ Ngọc) that provides the language to develop surgeries on almost-toric systems in dimension 4. We prove that faithful semitoric systems are natural building blocks of almost-toric systems. Moreover, we show that they enjoy many of the properties that their (proper) semitoric counterparts do.

Ключевые слова: completely integrable Hamiltonian systems; almost toric systems; semitoric systems; integral affine geometry; focus-focus singularities.

MSC: 37J35; 37J05; 53D20; 70H06

Поступила: 7 июля 2017 г.; в окончательном варианте 30 июля 2018 г.; опубликована 16 августа 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.084



Реферативные базы данных:
ArXiv: 1706.09935


© МИАН, 2024