RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 086, 16 стр. (Mi sigma1385)

Эта публикация цитируется в 6 статьях

A Hypergeometric Versionof the Modularity of Rigid Calabi–Yau Manifolds

Wadim Zudilinabc

a School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
b Laboratory of Mirror Symmetry and Automorphic Forms, National Research University Higher School of Economics, 6 Usacheva Str., 119048 Moscow, Russia
c Department of Mathematics, IMAPP, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands

Аннотация: We examine instances of modularity of (rigid) Calabi–Yau manifolds whose periods are expressed in terms of hypergeometric functions. The $p$-th coefficients $a(p)$ of the corresponding modular form can be often read off, at least conjecturally, from the truncated partial sums of the underlying hypergeometric series modulo a power of $p$ and from Weil's general bounds $|a(p)|\le2p^{(m-1)/2}$, where $m$ is the weight of the form. Furthermore, the critical $L$-values of the modular form are predicted to be $\mathbb Q$-proportional to the values of a related basis of solutions to the hypergeometric differential equation.

Ключевые слова: hypergeometric equation; bilateral hypergeometric series; modular form; Calabi–Yau manifold.

MSC: 11F33; 11T24; 14G10; 14J32; 14J33; 33C20

Поступила: 3 мая 2018 г.; в окончательном варианте 13 августа 2018 г.; опубликована 17 августа 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.086



Реферативные базы данных:
ArXiv: 1805.00544


© МИАН, 2024