Аннотация:
We investigate the recurrence coefficients of discrete orthogonal polynomials on the non-negative integers with hypergeometric weights
and show that they satisfy a system of non-linear difference equations and a non-linear second order differential equation in one of the parameters of the weights. The non-linear difference equations form a pair of discrete Painlevé equations and the differential equation is the $\sigma$-form of the sixth Painlevé equation. We briefly investigate the asymptotic behavior of the recurrence coefficients as $n\to \infty$ using the discrete Painlevé equations.