RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 088, 19 стр. (Mi sigma1387)

Эта публикация цитируется в 8 статьях

Discrete Orthogonal Polynomials with Hypergeometric Weights and Painlevé VI

Galina Filipuka, Walter Van Asscheb

a Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, Warsaw, 02-097, Poland
b Department of Mathematics, KU Leuven, Celestijnenlaan 200B box 2400, BE-3001 Leuven, Belgium

Аннотация: We investigate the recurrence coefficients of discrete orthogonal polynomials on the non-negative integers with hypergeometric weights and show that they satisfy a system of non-linear difference equations and a non-linear second order differential equation in one of the parameters of the weights. The non-linear difference equations form a pair of discrete Painlevé equations and the differential equation is the $\sigma$-form of the sixth Painlevé equation. We briefly investigate the asymptotic behavior of the recurrence coefficients as $n\to \infty$ using the discrete Painlevé equations.

Ключевые слова: discrete orthogonal polynomials; hypergeometric weights; discrete Painlevé equations; Painlevé VI.

MSC: 33C45; 33E17; 34M55; 42C05

Поступила: 10 апреля 2018 г.; в окончательном варианте 20 августа 2018 г.; опубликована 24 августа 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.088



Реферативные базы данных:
ArXiv: 1804.02856


© МИАН, 2024