RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 089, 13 стр. (Mi sigma1388)

Эта публикация цитируется в 2 статьях

On Lagrangians with Reduced-Order Euler–Lagrange Equations

David Saunders

Department of Mathematics, Faculty of Science, The University of Ostrava, 30. dubna 22, 701 03 Ostrava, Czech Republic

Аннотация: If a Lagrangian defining a variational problem has order $k$ then its Euler–Lagrange equations generically have order $2k$. This paper considers the case where the Euler–Lagrange equations have order strictly less than $2k$, and shows that in such a case the Lagrangian must be a polynomial in the highest-order derivative variables, with a specific upper bound on the degree of the polynomial. The paper also provides an explicit formulation, derived from a geometrical construction, of a family of such $k$-th order Lagrangians, and it is conjectured that all such Lagrangians arise in this way.

Ключевые слова: Euler–Lagrange equations; reduced-order; projectable.

MSC: 58E30

Поступила: 26 января 2018 г.; в окончательном варианте 23 августа 2018 г.; опубликована 25 августа 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.089



Реферативные базы данных:
ArXiv: 1801.06888


© МИАН, 2024