RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 092, 11 стр. (Mi sigma1391)

Эта публикация цитируется в 13 статьях

An Infinite Family of Maximally Superintegrable Systems in a Magnetic Field with Higher Order Integrals

Antonella Marchesielloa, Libor Šnoblb

a Czech Technical University in Prague, Faculty of Information Technology, Department of Applied Mathematics, Thákurova 9, 160 00 Prague 6, Czech Republic
b Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Physics, Břehová 7, 115 19 Prague 1, Czech Republic

Аннотация: We construct an additional independent integral of motion for a class of three dimensional minimally superintegrable systems with constant magnetic field. This class was introduced in [J. Phys. A: Math. Theor. 50 (2017), 245202, 24 pages] and it is known to possess periodic closed orbits. In the present paper we demonstrate that it is maximally superintegrable. Depending on the values of the parameters of the system, the newly found integral can be of arbitrarily high polynomial order in momenta.

Ключевые слова: integrability; superintegrability; higher order integrals; magnetic field.

MSC: 37J35; 78A25

Поступила: 10 апреля 2018 г.; в окончательном варианте 24 августа 2018 г.; опубликована 31 августа 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.092



Реферативные базы данных:
ArXiv: 1804.03039


© МИАН, 2024