RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 096, 49 стр. (Mi sigma1395)

The Variational Bi-Complex for Systems of Semi-Linear Hyperbolic PDEs in Three Variables

Sara Froehlich

Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montreal, QC H3A 0B9 Canada

Аннотация: This paper extends, to a class of systems of semi-linear hyperbolic second order PDEs in three variables, the geometric study of a single nonlinear hyperbolic PDE in the plane as presented in [Anderson I.M., Kamran N., Duke Math. J. 87 (1997), 265–319]. The constrained variational bi-complex is introduced and used to define form-valued conservation laws. A method for generating conservation laws from solutions to the adjoint of the linearized system associated to a system of PDEs is given. Finally, Darboux integrability for a system of three equations is discussed and a method for generating infinitely many conservation laws for such systems is described.

Ключевые слова: Laplace transform; conservation laws; Darboux integrable; variational bi-complex; hyperbolic second-order equations.

MSC: 35L65; 35A30; 58A15

Поступила: 11 декабря 2017 г.; в окончательном варианте 24 августа 2018 г.; опубликована 9 сентября 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.096



Реферативные базы данных:
ArXiv: 1712.03068


© МИАН, 2024