RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 098, 10 стр. (Mi sigma1397)

Эта публикация цитируется в 1 статье

Anti-Yetter–Drinfeld Modules for Quasi-Hopf Algebras

Ivan Kobyzeva, Ilya Shapirob

a Department of Pure Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
b Department of Mathematics and Statistics, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada

Аннотация: We apply categorical machinery to the problem of defining anti-Yetter–Drinfeld modules for quasi-Hopf algebras. While a definition of Yetter–Drinfeld modules in this setting, extracted from their categorical interpretation as the center of the monoidal category of modules has been given, none was available for the anti-Yetter–Drinfeld modules that serve as coefficients for a Hopf cyclic type cohomology theory for quasi-Hopf algebras. This is a followup paper to the authors' previous effort that addressed the somewhat different case of anti-Yetter–Drinfeld contramodule coefficients in this and in the Hopf algebroid setting.

Ключевые слова: monoidal category; cyclic homology; Hopf algebras; quasi-Hopf algebras.

MSC: 18D10; 18E05; 19D55; 16T05

Поступила: 20 апреля 2018 г.; в окончательном варианте 10 сентября 2018 г.; опубликована 13 сентября 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.098



Реферативные базы данных:
ArXiv: 1804.02031


© МИАН, 2025