RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 104, 17 стр. (Mi sigma1403)

Эта публикация цитируется в 2 статьях

Drinfeld–Sokolov Hierarchies, Tau Functions, and Generalized Schur Polynomials

Mattia Cafassoa, Ann du Crest de Villeneuvea, Di Yangbc

a LAREMA, Université d'Angers, 2 boulevard Lavoisier, Angers 49000, France
b Max Planck Institute for Mathematics, Vivatsgasse 7, Bonn 53111, Germany
c School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, P.R. China

Аннотация: For a simple Lie algebra $\mathfrak{g}$ and an irreducible faithful representation $\pi$ of $\mathfrak{g}$, we introduce the Schur polynomials of $(\mathfrak{g},\pi)$-type. We then derive the Sato–Zhou type formula for tau functions of the Drinfeld–Sokolov (DS) hierarchy of $\mathfrak{g}$-type. Namely, we show that the tau functions are linear combinations of the Schur polynomials of $(\mathfrak{g},\pi)$-type with the coefficients being the Plücker coordinates. As an application, we provide a way of computing polynomial tau functions for the DS hierarchy. For $\mathfrak{g}$ of low rank, we give several examples of polynomial tau functions, and use them to detect bilinear equations for the DS hierarchy.

Ключевые слова: Drinfeld–Sokolov hierarchy; tau function; generalized Schur polynomials.

MSC: 37K10; 17B80

Поступила: 28 апреля 2018 г.; в окончательном варианте 19 сентября 2018 г.; опубликована 27 сентября 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.104



Реферативные базы данных:
ArXiv: 1709.07309


© МИАН, 2024