RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 113, 50 стр. (Mi sigma1412)

Эта публикация цитируется в 4 статьях

Three-Parameter Solutions of the PV Schlesinger-Type Equation near the Point at Infinity and the Monodromy Data

Shun Shimomura

Department of Mathematics, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

Аннотация: For the Schlesinger-type equation related to the fifth Painlevé equation (V) via isomonodromy deformation, we present a three-parameter family of matrix solutions along the imaginary axis near the point at infinity, and also the corresponding monodromy data. Two-parameter solutions of (V) with their monodromy data immediately follow from our results. Under certain conditions, these solutions of (V) admit sequences of zeros and of poles along the imaginary axis. The monodromy data are obtained by matching techniques for a perturbed linear system.

Ключевые слова: Schlesinger-type equation; fifth Painlevé equation; isomonodromy deformation; monodromy data.

MSC: 34M55; 34M56; 34M40; 34M35; 34E10

Поступила: 1 мая 2018 г.; в окончательном варианте 3 октября 2018 г.; опубликована 22 октября 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.113



Реферативные базы данных:
ArXiv: 1804.10369


© МИАН, 2024