RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 117, 14 стр. (Mi sigma1416)

Truncated Solutions of Painlevé Equation $\mathrm{P_V}$

Rodica D. Costin

The Ohio State University, 231 W 18th Ave, Columbus, OH 43210, USA

Аннотация: We obtain convergent representations (as Borel summed transseries) for the five one-parameter families of truncated solutions of the fifth Painlevé equation with nonzero parameters, valid in half planes, for large independent variable. We also find the position of the first array of poles, bordering the region of analyticity. For a special value of this parameter they represent tri-truncated solutions, analytic in almost the full complex plane, for large independent variable. A brief historical note, and references on truncated solutions of the other Painlevé equations are also included.

Ключевые слова: Painlevé trascendents; the fifth Painlevé equation; truncated solutions; poles of truncated solutions.

MSC: 33E17; 34M30; 34M25

Поступила: 1 мая 2018 г.; в окончательном варианте 25 октября 2018 г.; опубликована 31 октября 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.117



Реферативные базы данных:
ArXiv: 1804.11273


© МИАН, 2024