Аннотация:
We prove an equivalence between the existence of the first structure relation satisfied by a sequence of monic orthogonal polynomials $\{P_n\}_{n=0}^{\infty}$, the orthogonality of the second derivatives $\{\mathbb{D}_{x}^2P_n\}_{n= 2}^{\infty}$ and a generalized Sturm–Liouville type equation. Our treatment of the generalized Bochner theorem leads to explicit solutions of the difference equation [Vinet L., Zhedanov A., J. Comput. Appl. Math.211 (2008), 45–56], which proves that the only monic orthogonal polynomials that satisfy the first structure relation are Wilson polynomials, continuous dual Hahn polynomials, Askey–Wilson polynomials and their special or limiting cases as one or more parameters tend to $\infty$. This work extends our previous result [arXiv:1711.03349] concerning a conjecture due to Ismail. We also derive a second structure relation for polynomials satisfying the first structure relation.