RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 127, 46 стр. (Mi sigma1426)

Эта публикация цитируется в 1 статье

Parallels between Moduli of Quiver Representations and Vector Bundles over Curves

Victoria Hoskins

Freie Universität Berlin, Arnimallee 3, Raum 011, 14195 Berlin, Germany

Аннотация: This is a review article exploring similarities between moduli of quiver representations and moduli of vector bundles over a smooth projective curve. After describing the basic properties of these moduli problems and constructions of their moduli spaces via geometric invariant theory and symplectic reduction, we introduce their hyperkähler analogues: moduli spaces of representations of a doubled quiver satisfying certain relations imposed by a moment map and moduli spaces of Higgs bundles. Finally, we survey a surprising link between the counts of absolutely indecomposable objects over finite fields and the Betti cohomology of these (complex) hyperkähler moduli spaces due to work of Crawley-Boevey and Van den Bergh and Hausel, Letellier and Rodriguez-Villegas in the quiver setting, and work of Schiffmann in the bundle setting.

Ключевые слова: algebraic moduli problems; geometric invariant theory; representation theory of quivers; vector bundles and Higgs bundles on curves.

MSC: 14D20; 14L24; 16G20; 14H60

Поступила: 25 сентября 2018 г.; в окончательном варианте 18 ноября 2018 г.; опубликована 4 декабря 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.127



Реферативные базы данных:
ArXiv: 1809.05738


© МИАН, 2025