RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2019, том 15, 007, 17 стр. (Mi sigma1443)

Эта публикация цитируется в 2 статьях

Supersingular Elliptic Curves and Moonshine

Victor Manuel Arichetaab

a Department of Mathematics, Emory University, Atlanta, GA 30322, USA
b Institute of Mathematics, University of the Philippines, Diliman 1101, Quezon City, Philippines

Аннотация: We generalize a theorem of Ogg on supersingular $j$-invariants to supersingular elliptic curves with level. Ogg observed that the level one case yields a characterization of the primes dividing the order of the monster. We show that the corresponding analyses for higher levels give analogous characterizations of the primes dividing the orders of other sporadic simple groups (e.g., baby monster, Fischer's largest group). This situates Ogg's theorem in a broader setting. More generally, we characterize, in terms of supersingular elliptic curves with level, the primes arising as orders of Fricke elements in centralizer subgroups of the monster. We also present a connection between supersingular elliptic curves and umbral moonshine. Finally, we present a procedure for explicitly computing invariants of supersingular elliptic curves with level structure.

Ключевые слова: moonshine; modular curves; supersingular elliptic curves; supersingular polynomials.

MSC: 14H52; 11F06; 11F11; 11F22; 11F37; 20D08

Поступила: 30 сентября 2018 г.; в окончательном варианте 19 января 2019 г.; опубликована 29 января 2019 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2019.007



Реферативные базы данных:
ArXiv: 1809.07421


© МИАН, 2024