RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2019, том 15, 009, 18 стр. (Mi sigma1445)

Эта публикация цитируется в 5 статьях

On Reducible Degeneration of Hyperelliptic Curves and Soliton Solutions

Atsushi Nakayashiki

Department of Mathematics, Tsuda University, 2-1-1, Tsuda-Machi, Kodaira, Tokyo, Japan

Аннотация: In this paper we consider a reducible degeneration of a hyperelliptic curve of genus $g$. Using the Sato Grassmannian we show that the limits of hyperelliptic solutions of the KP-hierarchy exist and become soliton solutions of various types. We recover some results of Abenda who studied regular soliton solutions corresponding to a reducible rational curve obtained as a degeneration of a hyperelliptic curve. We study singular soliton solutions as well and clarify how the singularity structure of solutions is reflected in the matrices which determine soliton solutions.

Ключевые слова: hyperelliptic curve; soliton solution; KP hierarchy; Sato Grassmannian.

MSC: 37K40; 37K10; 14H70

Поступила: 27 августа 2018 г.; в окончательном варианте 29 января 2019 г.; опубликована 8 февраля 2019 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2019.009



Реферативные базы данных:
ArXiv: 1808.06748


© МИАН, 2024