Аннотация:
We study twisted products $H=\alpha^rH_r$ of natural autonomous Hamiltonians $H_r$, each one depending on a separate set, called here separate $r$-block, of variables. We show that, when the twist functions $\alpha^r$ are a row of the inverse of a block-Stäckel matrix, the dynamics of $H$ reduces to the dynamics of the $H_r$, modified by a scalar potential depending only on variables of the corresponding $r$-block. It is a kind of partial separation of variables. We characterize this block-separation in an invariant way by writing in block-form classical results of Stäckel separation of variables. We classify the block-separable coordinates of $\mathbb E^3$.
Ключевые слова:Stäckel systems; partial separation of variables; position-dependent time parametrisation.