RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2019, том 15, 014, 27 стр. (Mi sigma1450)

Эта публикация цитируется в 4 статьях

Generalised Umbral Moonshine

Miranda C. N. Chengab, Paul De Langec, Daniel P. Z. Whalend

a Institute of Physics, University of Amsterdam, Amsterdam, The Netherlands
b Korteweg-de Vries Institute for Mathematics, Amsterdam, The Netherlands
c Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506, USA
d Stanford Institute for Theoretical Physics, Department of Physics and Theory Group, SLAC, Stanford University, Stanford, CA 94305, USA

Аннотация: Umbral moonshine describes an unexpected relation between 23 finite groups arising from lattice symmetries and special mock modular forms. It includes the Mathieu moonshine as a special case and can itself be viewed as an example of the more general moonshine phenomenon which connects finite groups and distinguished modular objects. In this paper we introduce the notion of generalised umbral moonshine, which includes the generalised Mathieu moonshine [Gaberdiel M.R., Persson D., Ronellenfitsch H., Volpato R., Commun. Number Theory Phys. 7 (2013), 145–223] as a special case, and provide supporting data for it. A central role is played by the deformed Drinfel'd (or quantum) double of each umbral finite group $G$, specified by a cohomology class in $H^3(G,U(1))$. We conjecture that in each of the 23 cases there exists a rule to assign an infinite-dimensional module for the deformed Drinfel'd double of the umbral finite group underlying the mock modular forms of umbral moonshine and generalised umbral moonshine. We also discuss the possible origin of the generalised umbral moonshine.

Ключевые слова: moonshine; mock modular form; finite group representations; group cohomology.

MSC: 11F22; 11F37; 20C34

Поступила: 8 октября 2018 г.; в окончательном варианте 30 января 2019 г.; опубликована 2 марта 2019 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2019.014



Реферативные базы данных:
ArXiv: 1608.07835


© МИАН, 2024