RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2019, том 15, 015, 14 стр. (Mi sigma1451)

Эта публикация цитируется в 1 статье

A Geometric Approach to the Concept of Extensivity in Thermodynamics

Miguel Ángel García-Ariza

Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72750, Puebla, Pue., Mexico

Аннотация: This paper presents a rigorous treatment of the concept of extensivity in equilibrium thermodynamics from a geometric point of view. This is achieved by endowing the manifold of equilibrium states of a system with a smooth atlas that is compatible with the pseudogroup of transformations on a vector space that preserve the radial vector field. The resulting geometric structure allows for accurate definitions of extensive differential forms and scaling, and the well-known relationship between both is reproduced. This structure is represented by a global vector field that is locally written as a radial one. The submanifolds that are transversal to it are embedded, and locally defined by extensive functions.

Ключевые слова: homogeneous functions; extensive variables; equilibrium thermodynamics.

MSC: 80A05; 80A10

Поступила: 24 мая 2018 г.; в окончательном варианте 22 февраля 2019 г.; опубликована 2 марта 2019 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2019.015



Реферативные базы данных:
ArXiv: 1807.00873


© МИАН, 2024