RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2019, том 15, 019, 33 стр. (Mi sigma1455)

Эта публикация цитируется в 1 статье

Linear Representations and Frobenius Morphisms of Groupoids

Juan Jesús Barbarán Sáncheza, Laiachi El Kaoutitba

a Universidad de Granada, Departamento de Álgebra, Facultad de Educación, Econonía y Tecnología de Ceuta, Cortadura del Valle, s/n. E-51001 Ceuta, Spain
b IEMath-Granada

Аннотация: Given a morphism of (small) groupoids with injective object map, we provide sufficient and necessary conditions under which the induction and co-induction functors between the categories of linear representations are naturally isomorphic. A morphism with this property is termed a Frobenius morphism of groupoids. As a consequence, an extension by a subgroupoid is Frobenius if and only if each fibre of the (left or right) pull-back biset has finitely many orbits. Our results extend and clarify the classical Frobenius reciprocity formulae in the theory of finite groups, and characterize Frobenius extension of algebras with enough orthogonal idempotents.

Ключевые слова: Linear representations of groupoids; restriction, inductions and co-induction functors; groupoids-bisets; translation groupoids; Frobenius extensions; Frobenius reciprocity formula.

MSC: 18B40, 20L05, 20L99; 18D10,16D90, 18D35

Поступила: 26 июня 2018 г.; в окончательном варианте 22 февраля 2019 г.; опубликована 12 марта 2019 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2019.019



Реферативные базы данных:
ArXiv: 1806.09327


© МИАН, 2024