RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2019, том 15, 023, 42 стр. (Mi sigma1459)

$\tau$-Functions, Birkhoff Factorizations and Difference Equations

Darlayne Addabboa, Maarten Bergveltb

a Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, USA
b Department of Mathematics, University of Illinois, Urbana-Champaign, IL 61801, USA

Аннотация: $Q$-systems and $T$-systems are systems of integrable difference equations that have recently attracted much attention, and have wide applications in representation theory and statistical mechanics. We show that certain $\tau$-functions, given as matrix elements of the action of the loop group of ${\rm GL}_{2}$ on two-component fermionic Fock space, give solutions of a $Q$-system. An obvious generalization using the loop group of ${\rm GL}_3$ acting on three-component fermionic Fock space leads to a new system of $4$ difference equations.

Ключевые слова: integrable systems; $\tau$-functions; $Q$- and $T$-systems; Birkhoff factorizations.

MSC: 17B80

Поступила: 24 июля 2018 г.; в окончательном варианте 5 марта 2019 г.; опубликована 27 марта 2019 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2019.023



Реферативные базы данных:
ArXiv: 1605.00192


© МИАН, 2024