Аннотация:$Q$-systems and $T$-systems are systems of integrable difference equations that have recently attracted much attention, and have wide applications in representation theory and statistical mechanics. We show that certain $\tau$-functions, given as matrix elements of the action of the loop group of ${\rm GL}_{2}$ on two-component fermionic Fock space, give solutions of a $Q$-system. An obvious generalization using the loop group of ${\rm GL}_3$ acting on three-component fermionic Fock space leads to a new system of $4$ difference equations.
Ключевые слова:integrable systems; $\tau$-functions; $Q$- and $T$-systems; Birkhoff factorizations.