RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2007, том 3, 020, 29 стр. (Mi sigma146)

Эта публикация цитируется в 2 статьях

Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows

Henrik Aratyna, Johan van de Leurb

a Department of Physics, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607-7059, USA
b Mathematical Institute, University of Utrecht, P. O. Box 80010, 3508 TA Utrecht, The Netherlands

Аннотация: We use a Grassmannian framework to define multi-component tau functions as expectation values of certain multi-component Fermi operators satisfying simple bilinear commutation relations on Clifford algebra. The tau functions contain both positive and negative flows and are shown to satisfy the $2n$-component KP hierarchy. The hierarchy equations can be formulated in terms of pseudo-differential equations for $n\times n$ matrix wave functions derived in terms of tau functions. These equations are cast in form of Sato–Wilson relations. A reduction process leads to the AKNS, two-component Camassa–Holm and Cecotti–Vafa models and the formalism provides simple formulas for their solutions.

Ключевые слова: Clifford algebra; tau-functions; Kac–Moody algebras; loop groups; Camassa–Holm equation; Cecotti–Vafa equations; AKNS hierarchy.

MSC: 11E88; 17B67; 22E67; 37K10

Поступила: 11 октября 2006 г.; в окончательном варианте 9 января 2007 г.; опубликована 6 февраля 2007 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2007.020



Реферативные базы данных:
ArXiv: nlin.SI/0605027


© МИАН, 2024