RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2019, том 15, 032, 15 стр. (Mi sigma1468)

Эта публикация цитируется в 2 статьях

Construction of Two Parametric Deformation of KdV-Hierarchy and Solution in Terms of Meromorphic Functions on the Sigma Divisor of a Hyperelliptic Curve of Genus 3

Takanori Ayanoa, Victor M. Buchstaberb

a Osaka City University, Advanced Mathematical Institute, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
b Steklov Mathematical Institute of Russian Academy of Sciences, 8 Gubkina Street, Moscow, 119991, Russia

Аннотация: Buchstaber and Mikhailov introduced the polynomial dynamical systems in $\mathbb{C}^4$ with two polynomial integrals on the basis of commuting vector fields on the symmetric square of hyperelliptic curves. In our previous paper, we constructed the field of meromorphic functions on the sigma divisor of hyperelliptic curves of genus 3 and solutions of the systems for $g=3$ by these functions. In this paper, as an application of our previous results, we construct two parametric deformation of the KdV-hierarchy. This new system is integrated in the meromorphic functions on the sigma divisor of hyperelliptic curves of genus 3. In Section 8 of our previous paper [Funct. Anal. Appl. 51 (2017), 162–176], there are miscalculations. In appendix of this paper, we correct the errors.

Ключевые слова: Abelian functions, hyperelliptic sigma functions, polynomial dynamical systems, commuting vector fields, KdV-hierarchy.

MSC: 14K25, 14H40, 14H42, 14H70

Поступила: 21 ноября 2018 г.; в окончательном варианте 11 апреля 2019 г.; опубликована 27 апреля 2019 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2019.032



Реферативные базы данных:
ArXiv: 1811.07138


© МИАН, 2024