RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2019, том 15, 033, 35 стр. (Mi sigma1469)

Эта публикация цитируется в 1 статье

$p$-Adic Properties of Hauptmoduln with Applications to Moonshine

Ryan C. Chen, Samuel Marks, Matthew Tyler

Department of Mathematics, Princeton University, Princeton, NJ 08544, USA

Аннотация: The theory of monstrous moonshine asserts that the coefficients of Hauptmoduln, including the $j$-function, coincide precisely with the graded characters of the monster module, an infinite-dimensional graded representation of the monster group. On the other hand, Lehner and Atkin proved that the coefficients of the $j$-function satisfy congruences modulo $p^n$ for $p \in \{2, 3, 5, 7, 11\}$, which led to the theory of $p$-adic modular forms. We combine these two aspects of the $j$-function to give a general theory of congruences modulo powers of primes satisfied by the Hauptmoduln appearing in monstrous moonshine. We prove that many of these Hauptmoduln satisfy such congruences, and we exhibit a relationship between these congruences and the group structure of the monster. We also find a distinguished class of subgroups of the monster with graded characters satisfying such congruences.

Ключевые слова: modular forms congruences; $p$-adic modular forms; moonshine.

MSC: 11F11, 11F22, 11F33

Поступила: 19 сентября 2018 г.; в окончательном варианте 10 апреля 2019 г.; опубликована 29 апреля 2019 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2019.033



Реферативные базы данных:
ArXiv: 1809.02913


© МИАН, 2024