RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2019, том 15, 034, 7 стр. (Mi sigma1470)

Jacobian Conjecture via Differential Galois Theory

Elżbieta Adamusa, Teresa Crespob, Zbigniew Hajtoc

a Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
b Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
c Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Lojasiewicza 6, 30-348 Kraków, Poland

Аннотация: We prove that a polynomial map is invertible if and only if some associated differential ring homomorphism is bijective. To this end, we use a theorem of Crespo and Hajto linking the invertibility of polynomial maps with Picard–Vessiot extensions of partial differential fields, the theory of strongly normal extensions as presented by Kovacic and the characterization of Picard–Vessiot extensions in terms of tensor products given by Levelt.

Ключевые слова: polynomial automorphisms, Jacobian problem, strongly normal extensions.

MSC: 14R10, 14R15, 13N15, 12F10

Поступила: 23 января 2019 г.; в окончательном варианте 1 мая 2019 г.; опубликована 3 мая 2019 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2019.034



Реферативные базы данных:
ArXiv: 1901.01566


© МИАН, 2024