RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2019, том 15, 039, 32 стр. (Mi sigma1475)

Эта публикация цитируется в 5 статьях

Higgs Bundles and Geometric Structures on Manifolds

Daniele Alessandrini

Ruprecht-Karls-Universitaet Heidelberg, INF 205, 69120, Heidelberg, Germany

Аннотация: Geometric structures on manifolds became popular when Thurston used them in his work on the geometrization conjecture. They were studied by many people and they play an important role in higher Teichmüller theory. Geometric structures on a manifold are closely related with representations of the fundamental group and with flat bundles. Higgs bundles can be very useful in describing flat bundles explicitly, via solutions of Hitchin's equations. Baraglia has shown in his Ph.D. Thesis that Higgs bundles can also be used to construct geometric structures in some interesting cases. In this paper, we will explain the main ideas behind this theory and we will survey some recent results in this direction, which are joint work with Qiongling Li.

Ключевые слова: geometric structures, Higgs bundles, higher Teichmüller theory, Anosov representations.

MSC: 57M50; 53C07; 22E40

Поступила: 28 сентября 2018 г.; в окончательном варианте 17 апреля 2019 г.; опубликована 10 мая 2019 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2019.039



Реферативные базы данных:
ArXiv: 1809.07290


© МИАН, 2024