Эта публикация цитируется в
3 статьях
Hecke Operators on Vector-Valued Modular Forms
Vincent Boucharda,
Thomas Creutzigba,
Aniket Joshia a Department of Mathematical & Statistical Sciences, University of Alberta,
632 Central Academic Building, Edmonton T6G 2G1, Canada
b Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
Аннотация:
We study Hecke operators on vector-valued modular forms for the Weil representation
$\rho_L$ of a lattice
$L$. We first construct Hecke operators
$\mathcal{T}_r$ that map vector-valued modular forms of type
$\rho_L$ into vector-valued modular forms of type
$\rho_{L(r)}$, where
$L(r)$ is the lattice
$L$ with rescaled bilinear form
$(\cdot, \cdot)_r = r (\cdot, \cdot)$, by lifting standard Hecke operators for scalar-valued modular forms using Siegel theta functions. The components of the vector-valued Hecke operators
$\mathcal{T}_r$ have appeared in [
Comm. Math. Phys. 350 (2017), 1069–1121] as generating functions for D4-D2-D0 bound states on K3-fibered Calabi–Yau threefolds. We study algebraic relations satisfied by the Hecke operators
$\mathcal{T}_r$. In the particular case when
$r=n^2$ for some positive integer
$n$, we compose
$\mathcal{T}_{n^2}$ with a projection operator to construct new Hecke operators
$\mathcal{H}_{n^2}$ that map vector-valued modular forms of type
$\rho_L$ into vector-valued modular forms of the same type. We study algebraic relations satisfied by the operators
$\mathcal{H}_{n^2}$, and compare our operators with the alternative construction of Bruinier–Stein [
Math. Z. 264 (2010), 249–270] and Stein [
Funct. Approx. Comment. Math. 52 (2015), 229–252].
Ключевые слова:
Hecke operators, vector-valued modular forms, Weil representation.
MSC: 11F25,
11F27,
17B69,
14N35 Поступила: 26 сентября 2018 г.; в окончательном варианте
13 мая 2019 г.; опубликована
25 мая 2019 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2019.041