RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2019, том 15, 041, 31 стр. (Mi sigma1477)

Эта публикация цитируется в 3 статьях

Hecke Operators on Vector-Valued Modular Forms

Vincent Boucharda, Thomas Creutzigba, Aniket Joshia

a Department of Mathematical & Statistical Sciences, University of Alberta, 632 Central Academic Building, Edmonton T6G 2G1, Canada
b Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

Аннотация: We study Hecke operators on vector-valued modular forms for the Weil representation $\rho_L$ of a lattice $L$. We first construct Hecke operators $\mathcal{T}_r$ that map vector-valued modular forms of type $\rho_L$ into vector-valued modular forms of type $\rho_{L(r)}$, where $L(r)$ is the lattice $L$ with rescaled bilinear form $(\cdot, \cdot)_r = r (\cdot, \cdot)$, by lifting standard Hecke operators for scalar-valued modular forms using Siegel theta functions. The components of the vector-valued Hecke operators $\mathcal{T}_r$ have appeared in [Comm. Math. Phys. 350 (2017), 1069–1121] as generating functions for D4-D2-D0 bound states on K3-fibered Calabi–Yau threefolds. We study algebraic relations satisfied by the Hecke operators $\mathcal{T}_r$. In the particular case when $r=n^2$ for some positive integer $n$, we compose $\mathcal{T}_{n^2}$ with a projection operator to construct new Hecke operators $\mathcal{H}_{n^2}$ that map vector-valued modular forms of type $\rho_L$ into vector-valued modular forms of the same type. We study algebraic relations satisfied by the operators $\mathcal{H}_{n^2}$, and compare our operators with the alternative construction of Bruinier–Stein [Math. Z. 264 (2010), 249–270] and Stein [Funct. Approx. Comment. Math. 52 (2015), 229–252].

Ключевые слова: Hecke operators, vector-valued modular forms, Weil representation.

MSC: 11F25, 11F27, 17B69, 14N35

Поступила: 26 сентября 2018 г.; в окончательном варианте 13 мая 2019 г.; опубликована 25 мая 2019 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2019.041



Реферативные базы данных:
ArXiv: 1807.07703


© МИАН, 2024