Эта публикация цитируется в
3 статьях
Classification of Rank 2 Cluster Varieties
Travis Mandel School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, UK
Аннотация:
We classify rank
$2$ cluster varieties (those for which the span of the rows of the exchange matrix is
$2$-dimensional) according to the deformation type of a generic fiber
$U$ of their
$\mathcal{X}$-spaces, as defined by Fock and Goncharov [
Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 865–930]. Our approach is based on the work of Gross, Hacking, and Keel for cluster varieties and log Calabi–Yau surfaces. Call
$U$ positive if
$\dim[\Gamma(U,\mathcal{O}_U)] = \dim(U)$ (which equals 2 in these rank 2 cases). This is the condition for the Gross–Hacking–Keel construction [
Publ. Math. Inst. Hautes Études Sci. 122
(2015), 65–168] to produce an additive basis of theta functions on
$\Gamma(U,\mathcal{O}_U)$. We find that
$U$ is positive and either finite-type or non-acyclic (in the usual cluster sense) if and only if the inverse monodromy of the tropicalization
$U^{\mathrm{trop}}$ of
$U$ is one of Kodaira's monodromies. In these cases we prove uniqueness results about the log Calabi–Yau surfaces whose tropicalization is
$U^{\mathrm{trop}}$. We also describe the action of the cluster modular group on
$U^{\mathrm{trop}}$ in the positive cases.
Ключевые слова:
cluster varieties, log Calabi–Yau surfaces, tropicalization, cluster modular group.
MSC: 13F60,
14J32 Поступила: 9 мая 2018 г.; в окончательном варианте
15 мая 2019 г.; опубликована
27 мая 2019 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2019.042