RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2019, том 15, 042, 32 стр. (Mi sigma1478)

Эта публикация цитируется в 3 статьях

Classification of Rank 2 Cluster Varieties

Travis Mandel

School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, UK

Аннотация: We classify rank $2$ cluster varieties (those for which the span of the rows of the exchange matrix is $2$-dimensional) according to the deformation type of a generic fiber $U$ of their $\mathcal{X}$-spaces, as defined by Fock and Goncharov [Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 865–930]. Our approach is based on the work of Gross, Hacking, and Keel for cluster varieties and log Calabi–Yau surfaces. Call $U$ positive if $\dim[\Gamma(U,\mathcal{O}_U)] = \dim(U)$ (which equals 2 in these rank 2 cases). This is the condition for the Gross–Hacking–Keel construction [Publ. Math. Inst. Hautes Études Sci. 122 (2015), 65–168] to produce an additive basis of theta functions on $\Gamma(U,\mathcal{O}_U)$. We find that $U$ is positive and either finite-type or non-acyclic (in the usual cluster sense) if and only if the inverse monodromy of the tropicalization $U^{\mathrm{trop}}$ of $U$ is one of Kodaira's monodromies. In these cases we prove uniqueness results about the log Calabi–Yau surfaces whose tropicalization is $U^{\mathrm{trop}}$. We also describe the action of the cluster modular group on $U^{\mathrm{trop}}$ in the positive cases.

Ключевые слова: cluster varieties, log Calabi–Yau surfaces, tropicalization, cluster modular group.

MSC: 13F60, 14J32

Поступила: 9 мая 2018 г.; в окончательном варианте 15 мая 2019 г.; опубликована 27 мая 2019 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2019.042



Реферативные базы данных:
ArXiv: 1407.6241


© МИАН, 2024