RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2007, том 3, 022, 18 стр. (Mi sigma148)

Эта публикация цитируется в 20 статьях

Laurent Polynomials and Superintegrable Maps

Andrew N. W. Hone

Institute of Mathematics, Statistics \& Actuarial Science, University of Kent, Canterbury CT2 7NF, UK

Аннотация: This article is dedicated to the memory of Vadim Kuznetsov, and begins with some of the author's recollections of him. Thereafter, a brief review of Somos sequences is provided, with particular focus being made on the integrable structure of Somos-4 recurrences, and on the Laurent property. Subsequently a family of fourth-order recurrences that share the Laurent property are considered, which are equivalent to Poisson maps in four dimensions. Two of these maps turn out to be superintegrable, and their iteration furnishes infinitely many solutions of some associated quartic Diophantine equations.

Ключевые слова: Laurent property; integrable maps; Somos sequences.

MSC: 11B37; 33E05; 37J35

Поступила: 26 октября 2006 г.; опубликована 7 февраля 2007 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2007.022



Реферативные базы данных:
ArXiv: math.NT/0702280


© МИАН, 2024