RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2019, том 15, 068, 67 стр. (Mi sigma1504)

Эта публикация цитируется в 7 статьях

Vertex Models and Spin Chains in Formulas and Pictures

Khazret S. Nirovabc, Alexander V. Razumovd

a Institute for Nuclear Research of the Russian Academy of Sciences, 7a 60th October Ave., 117312 Moscow, Russia
b Mathematics and Natural Sciences, University of Wuppertal, 42097 Wuppertal, Germany
c Faculty of Mathematics, National Research University “Higher School of Economics”, 119048 Moscow, Russia
d NRC “Kurchatov Institute — IHEP”, 142281 Protvino, Moscow region, Russia

Аннотация: We systematise and develop a graphical approach to the investigations of quantum integrable vertex statistical models and the corresponding quantum spin chains. The graphical forms of the unitarity and various crossing relations are introduced. Their explicit analytical forms for the case of integrable systems associated with the quantum loop algebra ${\mathrm U}_q(\mathcal L(\mathfrak{sl}_{l + 1}))$ are given. The commutativity conditions for the transfer operators of lattices with a boundary are derived by the graphical method. Our consideration reveals useful advantages of the graphical approach for certain problems in the theory of quantum integrable systems.

Ключевые слова: quantum loop algebras, integrable vertex models, integrable spin models, graphical methods, open chains.

MSC: 17B37, 17B80, 16T05, 16T25

Поступила: 19 марта 2019 г.; в окончательном варианте 30 августа 2019 г.; опубликована 13 сентября 2019 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2019.068



Реферативные базы данных:
ArXiv: 1811.09401


© МИАН, 2024