Аннотация:
We derive series representations for the tau functions of the $q$-Painlevé V, $\mathrm{III_1}$, $\mathrm{III_2}$, and $\mathrm{III_3}$ equations, as degenerations of the tau functions of the $q$-Painlevé VI equation in [Jimbo M., Nagoya H., Sakai H., J. Integrable Syst.2 (2017), xyx009, 27 pages]. Our tau functions are expressed in terms of $q$-Nekrasov functions. Thus, our series representations for the tau functions have explicit combinatorial structures. We show that general solutions to the $q$-Painlevé V, $\mathrm{III_1}$, $\mathrm{III_2}$, and $\mathrm{III_3}$ equations are written by our tau functions. We also prove that our tau functions for the $q$-Painlevé $\mathrm{III_1}$, $\mathrm{III_2}$, and $\mathrm{III_3}$ equations satisfy the three-term bilinear equations for them.
Ключевые слова:$q$-Painlevé equations, tau functions, $q$-Nekrasov functions, bilinear equations.