RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2019, том 15, 075, 26 стр. (Mi sigma1511)

Twisted de Rham Complex on Line and Singular Vectors in $\widehat{{\mathfrak{sl}_2}}$ Verma Modules

Alexey Slinkina, Alexander Varchenkoab

a Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, USA
b Faculty of Mathematics and Mechanics, Lomonosov Moscow State University, Leninskiye Gory 1, 119991 Moscow GSP-1, Russia

Аннотация: We consider two complexes. The first complex is the twisted de Rham complex of scalar meromorphic differential forms on projective line, holomorphic on the complement to a finite set of points. The second complex is the chain complex of the Lie algebra of $\mathfrak{sl}_2$-valued algebraic functions on the same complement, with coefficients in a tensor product of contragradient Verma modules over the affine Lie algebra $\widehat{{\mathfrak{sl}_2}}$. In [Schechtman V., Varchenko A., Mosc. Math. J. 17 (2017), 787–802] a construction of a monomorphism of the first complex to the second was suggested and it was indicated that under this monomorphism the existence of singular vectors in the Verma modules (the Malikov–Feigin–Fuchs singular vectors) is reflected in the relations between the cohomology classes of the de Rham complex. In this paper we prove these results.

Ключевые слова: twisted de Rham complex, logarithmic differential forms, $\widehat{{\mathfrak{sl}_2}}$-modules, Lie algebra chain complexes.

MSC: 17B56, 17B67, 33C80

Поступила: 30 мая 2019 г.; в окончательном варианте 21 сентября 2019 г.; опубликована 26 сентября 2019 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2019.075



Реферативные базы данных:
ArXiv: 1812.09791


© МИАН, 2024