RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2019, том 15, 077, 39 стр. (Mi sigma1513)

Эта публикация цитируется в 2 статьях

Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras

Matthieu Faitg

IMAG, Univ Montpellier, CNRS, Montpellier, France

Аннотация: Let $\Sigma_{g,n}$ be a compact oriented surface of genus $g$ with $n$ open disks removed. The algebra $\mathcal{L}_{g,n}(H)$ was introduced by Alekseev–Grosse–Schomerus and Buffenoir–Roche and is a combinatorial quantization of the moduli space of flat connections on $\Sigma_{g,n}$. Here we focus on the two building blocks $\mathcal{L}_{0,1}(H)$ and $\mathcal{L}_{1,0}(H)$ under the assumption that the gauge Hopf algebra $H$ is finite-dimensional, factorizable and ribbon, but not necessarily semisimple. We construct a projective representation of $\mathrm{SL}_2(\mathbb{Z})$, the mapping class group of the torus, based on $\mathcal{L}_{1,0}(H)$ and we study it explicitly for $H = \overline{U}_q(\mathfrak{sl}(2))$. We also show that it is equivalent to the representation constructed by Lyubashenko and Majid.

Ключевые слова: combinatorial quantization, factorizable Hopf algebra, modular group, restricted quantum group.

MSC: 16T05, 81R05

Поступила: 2 февраля 2019 г.; в окончательном варианте 24 сентября 2019 г.; опубликована 3 октября 2019 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2019.077



Реферативные базы данных:
ArXiv: 1805.00924


© МИАН, 2024