RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2007, том 3, 026, 20 стр. (Mi sigma152)

Эта публикация цитируется в 12 статьях

Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature

Orlando Ragniscoa, Ángel Ballesterosb, Francisco J. Herranzb, Fabio Mussoa

a Dipartimento di Fisica, Università di Roma Tre and Instituto Nazionale di Fisica Nucleare sezione di Roma Tre, Via Vasca Navale 84, I-00146 Roma, ItalyUniversità degli Studi Roma Tre
b Departamento de Física, Universidad de Burgos, E-09001 Burgos, Spain

Аннотация: An infinite family of quasi-maximally superintegrable Hamiltonians with a common set of $(2N-3)$ integrals of the motion is introduced. The integrability properties of all these Hamiltonians are shown to be a consequence of a hidden non-standard quantum $sl(2,\mathbb R)$ Poisson coalgebra symmetry. As a concrete application, one of this Hamiltonians is shown to generate the geodesic motion on certain manifolds with a non-constant curvature that turns out to be a function of the deformation parameter $z$. Moreover, another Hamiltonian in this family is shown to generate geodesic motions on Riemannian and relativistic spaces all of whose sectional curvatures are constant and equal to the deformation parameter $z$. This approach can be generalized to arbitrary dimension by making use of coalgebra symmetry.

Ключевые слова: integrable systems; quantum groups; curvature; contraction; harmonic oscillator; Kepler–Coulomb; hyperbolic; de Sitter.

MSC: 37J35; 17B37

Поступила: 12 ноября 2006 г.; в окончательном варианте 22 января 2007 г.; опубликована 14 февраля 2007 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2007.026



Реферативные базы данных:
ArXiv: math-ph/0611040


© МИАН, 2024