Аннотация:
In this short note we revisit the ‘shift-desingularization’ version of the $[Q,R]=0$ theorem for possibly singular symplectic quotients. We take as starting point an elegant proof due to Szenes–Vergne of the quasi-polynomial behavior of the multiplicity as a function of the tensor power of the prequantum line bundle. We use the Berline–Vergne index formula and the stationary phase expansion to compute the quasi-polynomial, adapting an early approach of Meinrenken.