RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2019, том 15, 094, 18 стр. (Mi sigma1530)

Bi-Hamiltonian Systems in (2+1) and Higher Dimensions Defined by Novikov Algebras

Blażej M. Szablikowski

Faculty of Physics, Division of Mathematical Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland

Аннотация: The results from the article [Strachan I.A.B., Szablikowski B.M., Stud. Appl. Math. 133 (2014), 84–117] are extended over consideration of central extensions allowing the introducing of additional independent variables. Algebraic conditions associated to the first-order central extension with respect to additional independent variables are derived. As result $(2+1)$- and, in principle, higher-dimensional multicomponent bi-Hamiltonian systems are constructed. Necessary classification of the central extensions for low-dimensional Novikov algebras is performed and the theory is illustrated by significant $(2+1)$- and $(3+1)$-dimensional examples.

Ключевые слова: Novikov algebras, $(2+1)$- and $(3+1)$-dimensional integrable systems, bi-Hamiltonian structures, central extensions.

MSC: 37K10; 17B80; 37K30

Поступила: 21 июня 2019 г.; в окончательном варианте 21 ноября 2019 г.; опубликована 29 ноября 2019 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2019.094



Реферативные базы данных:
ArXiv: 1906.08388


© МИАН, 2024