RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2019, том 15, 095, 11 стр. (Mi sigma1531)

Эта публикация цитируется в 3 статьях

Cohomology of Restricted Filiform Lie Algebras ${\mathfrak m}_2^\lambda(p)$

Tyler J. Evansa, Alice Fialowskibc

a Department of Mathematics, Humboldt State University, Arcata, CA 95521, USA
b Institute of Mathematics, University of Pécs, Pécs, Hungary
c Institute of Mathematics Eötvös Loránd University, Budapest, Hungary

Аннотация: For the $p$-dimensional filiform Lie algebra ${\mathfrak m}_2(p)$ over a field ${\mathbb F}$ of prime characteristic $p\ge 5$ with nonzero Lie brackets $[e_1,e_i] = e_{i+1}$ for $1<i<p$ and $[e_2,e_i]=e_{i+2}$ for $2<i<p-1$, we show that there is a family ${\mathfrak m}_2^{\lambda}(p)$ of restricted Lie algebra structures parameterized by elements $\lambda \in {\mathbb F}^p$. We explicitly describe bases for the ordinary and restricted 1- and 2-cohomology spaces with trivial coefficients, and give formulas for the bracket and $[p]$-operations in the corresponding restricted one-dimensional central extensions.

Ключевые слова: restricted Lie algebra, central extension, cohomology, filiform Lie algebra.

MSC: 17B50; 17B56

Поступила: 19 августа 2019 г.; в окончательном варианте 24 ноября 2019 г.; опубликована 1 декабря 2019 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2019.095



Реферативные базы данных:
ArXiv: 1901.07532


© МИАН, 2024