RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2019, том 15, 100, 11 стр. (Mi sigma1536)

Picard–Vessiot Extensions of Real Differential Fields

Teresa Crespoa, Zbigniew Hajtob

a Departament de Matemátiques i Informática, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
b Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Prof. S. Lojasiewicza 6, 30-348 Kraków, Poland

Аннотация: For a linear differential equation defined over a formally real differential field $K$ with real closed field of constants $k$, Crespo, Hajto and van der Put proved that there exists a unique formally real Picard–Vessiot extension up to $K$-differential automorphism. However such an equation may have Picard–Vessiot extensions which are not formally real fields. The differential Galois group of a Picard–Vessiot extension for this equation has the structure of a linear algebraic group defined over $k$ and is a $k$-form of the differential Galois group $H$ of the equation over the differential field $K\big(\sqrt{-1}\big)$. These facts lead us to consider two issues: determining the number of $K$-differential isomorphism classes of Picard–Vessiot extensions and describing the variation of the differential Galois group in the set of $k$-forms of $H$. We address these two issues in the cases when $H$ is a special linear, a special orthogonal, or a symplectic linear algebraic group and conclude that there is no general behaviour.

Ключевые слова: real Picard–Vessiot theory, linear algebraic groups, group cohomology, real forms of algebraic groups.

MSC: 12H05, 13B05, 14P05, 12D15

Поступила: 4 июля 2019 г.; в окончательном варианте 22 декабря 2019 г.; опубликована 24 декабря 2019 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2019.100



Реферативные базы данных:
ArXiv: 1403.3226


© МИАН, 2024