Picard–Vessiot Extensions of Real Differential Fields
Teresa Crespoa,
Zbigniew Hajtob a Departament de Matemátiques i Informática, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
b Faculty of Mathematics and Computer Science, Jagiellonian University,
ul. Prof. S. Lojasiewicza 6, 30-348 Kraków, Poland
Аннотация:
For a linear differential equation defined over a formally real differential field
$K$ with real closed field of constants
$k$, Crespo, Hajto and van der Put proved that there exists a unique formally real Picard–Vessiot extension up to
$K$-differential automorphism. However such an equation may have Picard–Vessiot extensions which are not formally real fields. The differential Galois group of a Picard–Vessiot extension for this equation has the structure of a linear algebraic group defined over
$k$ and is a
$k$-form of the differential Galois group
$H$ of the equation over the differential field
$K\big(\sqrt{-1}\big)$. These facts lead us to consider two issues: determining the number of
$K$-differential isomorphism classes of Picard–Vessiot extensions and describing the variation of the differential Galois group in the set of
$k$-forms of
$H$. We address these two issues in the cases when
$H$ is a special linear, a special orthogonal, or a symplectic linear algebraic group and conclude that there is no general behaviour.
Ключевые слова:
real Picard–Vessiot theory, linear algebraic groups, group cohomology, real forms of algebraic groups.
MSC: 12H05,
13B05,
14P05,
12D15 Поступила: 4 июля 2019 г.; в окончательном варианте
22 декабря 2019 г.; опубликована
24 декабря 2019 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2019.100