RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2020, том 16, 003, 20 стр. (Mi sigma1540)

Эта публикация цитируется в 13 статьях

On Complex Gamma-Function Integrals

Sergey È. Derkachova, Alexander N. Manashovba

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Fontanka 27, 191023 St. Petersburg, Russia
b Institut für Theoretische Physik, Universität Hamburg, D-22761 Hamburg, Germany

Аннотация: It was observed recently that relations between matrix elements of certain operators in the ${\rm SL}(2,\mathbb R)$ spin chain models take the form of multidimensional integrals derived by R.A. Gustafson. The spin magnets with ${\rm SL}(2,\mathbb C)$ symmetry group and ${\rm L}_2(\mathbb C)$ as a local Hilbert space give rise to a new type of $\Gamma$-function integrals. In this work we present a direct calculation of two such integrals. We also analyse properties of these integrals and show that they comprise the star-triangle relations recently discussed in the literature. It is also shown that in the quasi-classical limit these integral identities are reduced to the duality relations for Dotsenko–Fateev integrals.

Ключевые слова: Mellin–Barnes integrals, star-triangle relation.

MSC: 33C70, 81R12

Поступила: 15 октября 2019 г.; в окончательном варианте 14 января 2020 г.; опубликована 18 января 2020 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2020.003



Реферативные базы данных:
ArXiv: 1908.01530


© МИАН, 2024