RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2020, том 16, 006, 46 стр. (Mi sigma1543)

Эта публикация цитируется в 4 статьях

Analytic Classification of Families of Linear Differential Systems Unfolding a Resonant Irregular Singularity

Martin Klimeš

Independent Researcher, Prague, Czech Republic

Аннотация: We give a complete classification of analytic equivalence of germs of parametric families of systems of complex linear differential equations unfolding a generic resonant singularity of Poincaré rank 1 in dimension $n = 2$ whose leading matrix is a Jordan bloc. The moduli space of analytic equivalence classes is described in terms of a tuple of formal invariants and a single analytic invariant obtained from the trace of monodromy, and analytic normal forms are given. We also explain the underlying phenomena of confluence of two simple singularities and of a turning point, the associated Stokes geometry, and the change of order of Borel summability of formal solutions in dependence on a complex parameter.

Ключевые слова: linear differential equations, confluence of singularities, Stokes phenomenon, monodromy, analytic classification, moduli space, biconfluent hypergeometric equation.

MSC: 34M03, 34M35, 34M40

Поступила: 13 марта 2019 г.; в окончательном варианте 21 декабря 2019 г.; опубликована 23 января 2020 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2020.006



Реферативные базы данных:
ArXiv: 1301.5228


© МИАН, 2024