Legendrian DGA Representations and the Colored Kauffman Polynomial
Justin Murraya,
Dan Rutherfordb a Department of Mathematics, 303 Lockett Hall, Louisiana State University,
Baton Rouge, LA 70803-4918, USA
b Department of Mathematical Sciences, Ball State University,
2000 W. University Ave., Muncie, IN 47306, USA
Аннотация:
For any Legendrian knot
$K$ in standard contact
$\mathbb{R}^3$ we relate counts of ungraded (
$1$-graded) representations of the Legendrian contact homology DG-algebra
$(\mathcal{A}(K),\partial)$ with the
$n$-colored Kauffman polynomial. To do this, we introduce an ungraded
$n$-colored ruling polynomial,
$R^1_{n,K}(q)$, as a linear combination of
reduced ruling polynomials of positive permutation braids and show that (i)
$R^1_{n,K}(q)$ arises as a specialization
$F_{n,K}(a,q)\big|_{a^{-1}=0}$ of the
$n$-colored Kauffman polynomial and (ii) when
$q$ is a power of two
$R^1_{n,K}(q)$ agrees with the total ungraded representation number,
$\operatorname{Rep}_1\big(K, \mathbb{F}_q^n\big)$, which is a normalized count of
$n$-dimensional representations of
$(\mathcal{A}(K),\partial)$ over the finite field
$\mathbb{F}_q$. This complements results from [Leverson C., Rutherford D.,
Quantum Topol. 11 (2020), 55–118] concerning the colored HOMFLY-PT polynomial,
$m$-graded representation numbers, and
$m$-graded ruling polynomials with
$m \neq 1$.
Ключевые слова:
Legendrian knots, Kauffman polynomial, ruling polynomial, augmentations.
MSC: 53D42;
57M27 Поступила: 28 августа 2019 г.; в окончательном варианте
10 марта 2020 г.; опубликована
22 марта 2020 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2020.017