RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2020, том 16, 017, 33 стр. (Mi sigma1554)

Legendrian DGA Representations and the Colored Kauffman Polynomial

Justin Murraya, Dan Rutherfordb

a Department of Mathematics, 303 Lockett Hall, Louisiana State University, Baton Rouge, LA 70803-4918, USA
b Department of Mathematical Sciences, Ball State University, 2000 W. University Ave., Muncie, IN 47306, USA

Аннотация: For any Legendrian knot $K$ in standard contact $\mathbb{R}^3$ we relate counts of ungraded ($1$-graded) representations of the Legendrian contact homology DG-algebra $(\mathcal{A}(K),\partial)$ with the $n$-colored Kauffman polynomial. To do this, we introduce an ungraded $n$-colored ruling polynomial, $R^1_{n,K}(q)$, as a linear combination of reduced ruling polynomials of positive permutation braids and show that (i) $R^1_{n,K}(q)$ arises as a specialization $F_{n,K}(a,q)\big|_{a^{-1}=0}$ of the $n$-colored Kauffman polynomial and (ii) when $q$ is a power of two $R^1_{n,K}(q)$ agrees with the total ungraded representation number, $\operatorname{Rep}_1\big(K, \mathbb{F}_q^n\big)$, which is a normalized count of $n$-dimensional representations of $(\mathcal{A}(K),\partial)$ over the finite field $\mathbb{F}_q$. This complements results from [Leverson C., Rutherford D., Quantum Topol. 11 (2020), 55–118] concerning the colored HOMFLY-PT polynomial, $m$-graded representation numbers, and $m$-graded ruling polynomials with $m \neq 1$.

Ключевые слова: Legendrian knots, Kauffman polynomial, ruling polynomial, augmentations.

MSC: 53D42; 57M27

Поступила: 28 августа 2019 г.; в окончательном варианте 10 марта 2020 г.; опубликована 22 марта 2020 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2020.017



Реферативные базы данных:
ArXiv: 1908.08978


© МИАН, 2025