RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2020, том 16, 022, 33 стр. (Mi sigma1559)

Эта публикация цитируется в 1 статье

Counting Periodic Trajectories of Finsler Billiards

Pavle V. M. Blagojevićab, Michael Harrisonc, S. Tabachnikovd, Günter M. Zieglera

a Institut für Mathematik, FU Berlin, Arnimallee 2, 14195 Berlin, Germany
b Mathematical Institut SASA, Knez Mihailova 36, 11000 Beograd, Serbia
c Department of Mathematical Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
d Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA

Аннотация: We provide lower bounds on the number of periodic Finsler billiard trajectories inside a quadratically convex smooth closed hypersurface $M$ in a $d$-dimensional Finsler space with possibly irreversible Finsler metric. An example of such a system is a billiard in a sufficiently weak magnetic field. The $r$-periodic Finsler billiard trajectories correspond to $r$-gons inscribed in $M$ and having extremal Finsler length. The cyclic group $\mathbb{Z}_r$ acts on these extremal polygons, and one counts the $\mathbb{Z}_r$-orbits. Using Morse and Lusternik–Schnirelmann theories, we prove that if $r\ge 3$ is prime, then the number of $r$-periodic Finsler billiard trajectories is not less than $(r-1)(d-2)+1$. We also give stronger lower bounds when $M$ is in general position. The problem of estimating the number of periodic billiard trajectories from below goes back to Birkhoff. Our work extends to the Finsler setting the results previously obtained for Euclidean billiards by Babenko, Farber, Tabachnikov, and Karasev.

Ключевые слова: mathematical billiards, Finsler manifolds, magnetic billiards, Morse and Lusternik–Schnirelmann theories, unlabeled cyclic configuration spaces.

MSC: 37J45; 55R80; 70H12

Поступила: 11 сентября 2019 г.; в окончательном варианте 25 марта 2020 г.; опубликована 3 апреля 2020 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2020.022



Реферативные базы данных:
ArXiv: 1712.07930


© МИАН, 2024