RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2020, том 16, 028, 42 стр. (Mi sigma1565)

Exponents Associated with $Y$-Systems and their Relationship with $q$-Series

Yuma Mizuno

Department of Mathematical and Computing Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

Аннотация: Let $X_r$ be a finite type Dynkin diagram, and $\ell$ be a positive integer greater than or equal to two. The $Y$-system of type $X_r$ with level $\ell$ is a system of algebraic relations, whose solutions have been proved to have periodicity. For any pair $(X_r, \ell)$, we define an integer sequence called exponents using formulation of the $Y$-system by cluster algebras. We give a conjectural formula expressing the exponents by the root system of type $X_r$, and prove this conjecture for $(A_1,\ell)$ and $(A_r, 2)$ cases. We point out that a specialization of this conjecture gives a relationship between the exponents and the asymptotic dimension of an integrable highest weight module of an affine Lie algebra. We also give a point of view from $q$-series identities for this relationship.

Ключевые слова: cluster algebras, $Y$-systems, root systems, $q$-series.

MSC: 13F60, 17B22, 81R10

Поступила: 27 сентября 2019 г.; в окончательном варианте 2 апреля 2020 г.; опубликована 18 апреля 2020 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2020.028



Реферативные базы данных:
ArXiv: 1812.05863


© МИАН, 2024